Paludiculture in Indonesia: current practise and its relevance on the strategy of peatland restoration

Hesti L. Tata, Marinus K. Harun, Hanna Artuti

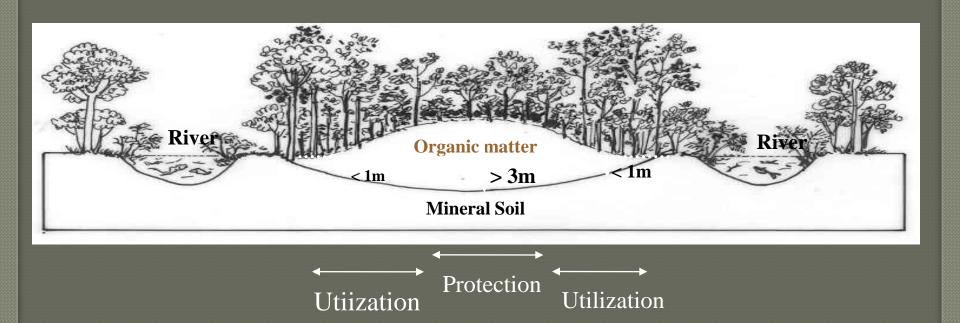
Forest Research & Development Centre, Bogor Forest & Environment R&D Institute, Banjarbaru, South Kalimantan Palangkaraya University, Faculty of Forestry, West Kalimantan

Renewable Resources from Wet and Rewetted Peatlands Greifswald, Germany, 26-28 September 2017

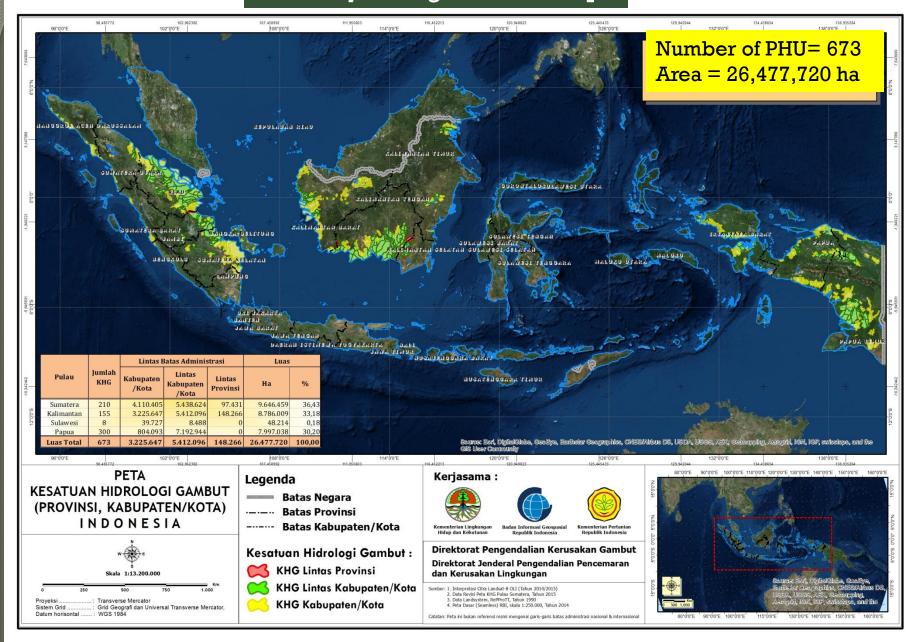
The importance of peatland ecosystem

Multifunctionality of Peatland Ecosystem

Providing Ecosystem Services: water storage, water regulation, carbon storage, biodiversity resources


Sources of income and livelihood

The balance of both functions has to be maintained through wise management in order to get sustainable benefits.


Protection and Productive Functions in Peatland hydrological unit (PHU)

Peatland Hydrological Unit -> peatland as a landscape

- In natural condition, it contains water 13 x of its biomass.
- High acidity, low nutrient content.
- Depth varied: 1 >10 m
- Total peat carbon store in Indonesia within: 13.6 GtC to 40.5 GtC (Warren et al., 2017).

Peat Hydrological Unit Map

Mis-management of peatlands:

- Prescribe burning
- Ilegal logging
- Extent drainage and/or channels
- Peat compacting
- Over-use chemicals (fertilizer and pesticide)

- $^{\circ}$ GHG (CO₂, CH₄, N₂O) emission increase
- > Water over-drained -> irreversible drying and fire
 - \triangleright Subsidence \rightarrow flood risk increase
- > Toxic compounds may release into water and atmosphere

Peatland Restoration

The degraded peatlands have to be restored through restoration, rehabilitation, or other relevant and new methods.

Hydrology restoration

Rehabilitation of vegetation

Revitalisation of the community

- Canal Blocking
- > Rewetting
- Paludiculture
- Revegetation
- Agroforestry
- Natural regeneration
- People/community involvement and participation

Restoration Peatland Ecosystem

- In accordance with the International Agenda:
- Bonn challenge The Forest Landscape Restoration

 → restoration target: 150 million ha of deforested

 and degraded area up to 2020, and 350 million ha

 by 2030.
- Adaptation & mitigation on climate change (UNFCCC), COP22 di Marakesh → "The Peatlands Global Initiative".
- Aichi Target of the Convention on Biological Diversity.
- d. The sustainable development goals (SDG).

In accordance with national agenda:

- President's Regulation No.1/2016 about National Restoration Agency, targeted 2.4 million ha to be restored by 2019.
- The Strategic Planning of the MoEF
- National target in 2019:
 - GHG emission is reduced by 26% and people adaptation to climate change increase
 - Management of peatlands is improved.
 - → 5% of PHUs in Indonesia (about 32 PHUs) are restored.

What can be offered by Paludiculture?

- Numbers of vegetations that naturally grow on peat-swamp (1467) has been identified, but only 40% has been known provide benefit for human (Giesen, 2015).
- Species selection in restoration consider some principles:
- Technologically practice
- 2) Ecologically friendly
- 3) Socially acceptable
- 4) Economically benefit

DAFTAR ISI

	Nata renganiai			
Daftar Isi.	Daftar Isi			
Daftar Tab	Daftar Tabel			
Daftar Gan	Daftar Gambar			
Daftar Isti	Daftar Istilah dan Singkatanxi			
Ringkasan	Ring kasan Eksekut if			
Ucapan Terima Kasihx				
Bab 1 Pendahuluan				
1.1	Latar Belakang	. 1		
1.2	Tujuan	. 2		
Bab 2 Met	odo lo gi	. 3		
Bab 3 Seja	rah dan Perkembangan Paludikultur di Indonesia	. 5		
3.1	Sejarah Paludikultur	. 5		
3.2	Perkembangan Paludikultur	. 6		
Bab 4 Jeni	s Tanaman pada Sistem Paludikultur	9		
4.1	Paludikultur Sagu (Metroxylon spp.)	10		
4.2				
4.3	Paludikultur Jelutung Rawa (Dyera polypbylla)	14		
4.4	Paludikultur Ramin (Gonystylus bancanus)	16		
4.5	Paludikultur Shorea balangeran Burck	19		
4.6	Paludikultur Gemor (Alseodaphne spp. dan Nothaphoebe spp.) 2			
4.7	Paludikultur Gelam (Melaleuca cajuputi Powell)	22		
4.8	Paludikultur Tengkawang (Shorea spp.)			
4.9	Paludikultur Purun Tikus (Eleocharis dulcis Hensch.)	26		
Bab 5 Keg	iatan Paludikultur di Indonesia	29		
5.1	Sungai Tohor, Kabupaten Kepulauan Meranti, Riau	29		
5.2	Taman Nasional Berbak, Jambi	32		
5.3	Sungai Bram Itam, Kabupaten Tanjung Jabung Barat, Jambi 3	34		
5.4	Desa Muara Merang, Kabupaten Musi Banyuasin, Sumatera Selatan	37		
5.5	Kedaton, Kabupaten Ogan Komering Ilir, Sumatera Selatan 3			
5.6	Taman Nasional Sebangau, Kalimantan Tengah			
5.7	Eks-Proyek Lahan Gambut (PLG) Sejuta Hektar, Kalimantan			
	Tengah	43		
5.8	Hutan Sagu di Kabupaten Jayapura, Papua			

6.1 Peluang Pasar Komoditas Paludikultur			
6.2 Kebijakan Pengembangan Produk Paludikultur			
Bab 7 Strategi Pengembangan Paludikultur di Indonesia 53			
Bab 8 Rekomendasi dan Peta Jalan55			
8.1 Rekomendasi			
8.2 Arahan Peta Jalan (Roadmap)			
Oaftar Pustaka			

Rab 6 Peluang Pasar dan Kebijakan

The book can be accessed at: www.forda-mof.org

Paludiculture practises in Indonesia

Some alternative species and their uses

No.	Benefit / Use	Species
1.	Food (fruits, carbohydrate, protein, spice)	Sago (<i>Metroxylon sago</i>), Kerantungan (<i>Durio oxyelanus</i>), Pepaken (<i>Durio kutejensis</i>), Mangga Kesturi (<i>Mangifera casturi</i>), Kweni (Mangifera ofodara), Nipah (<i>Nypa fruticans</i>), Durian (<i>Nephelium</i> spp.), asam kandis (<i>Garcinia xanthoxymus</i>)
2.	Fiber	Geronggang (<i>Cratoxylum arborenscens</i> , Terentang (<i>Campnosperma auriculatum</i>), gelam (<i>Melaleuca cajuput</i>)
3.	Bio-energy	Gelam (<i>Melaleuca cajuput</i>), sago, nipah
4.	Latex	Jelutung (<i>Dyera polyphylla</i>), nyatoh (<i>Palaquium leiocarpum</i>), sundi (<i>Payena</i> spp. <i>Madhuca</i> spp.)
5.	Medicine	Akar kuning (<i>Coscinium fenestratum</i>), pulai (<i>Alstonia penumatophora</i>)
6.	Others (Non-timber)	Gemor (<i>Alseodaphn</i> e sp.; <i>Notaphoebe</i> sp.), purun (<i>Elaeocharis dulcis</i>), rattan (<i>Calamus tracycoleus</i>), gaharu
7.	Conservation- value	Ramin (<i>Gonystylus bancanus</i>), <i>Shorea</i> spp.

Jelutung, coffee, bettlenu t in Jambi

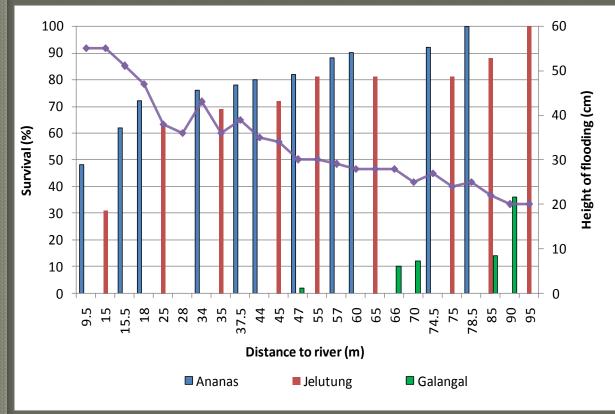
Coffea liberica

Paludiculture in Jambi

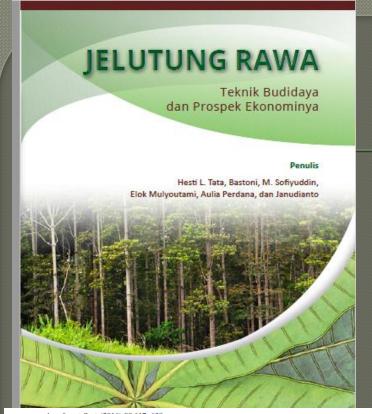
Tipology: Ombrogen

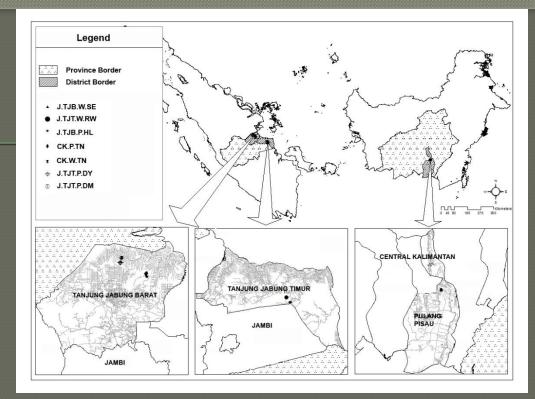
Peat depth: shallow – moderate (50-250 cm)

Maturity: hemic - sapric



Jelutung & oil palm in Bram Itam, Jambi


Bettlenut & pineapple


Flooded effects on survival of cash-crops

(Bastoni et al., 2015; PFRM report)

Agroforest Syst (2016) 90:617-630 DOI 10.1007/s10457-015-9837-3

Domestication of *Dyera polyphylla* (Miq.) Steenis in peatland agroforestry systems in Jambi, Indonesia

Hesti L. Tata · Meine van Noordwijk · Jasnari · Atiek Widayati

Received: 23 March 2015/Accepted: 6 August 2015/Published online: 25 August 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com

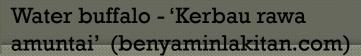
Abstract As part of a broader pattern of recovery after decline called forest transition, tree cover and carbon stocks have increased through agroforestry systems in many parts of Indonesia. The associated tree diversity transition implies that only the most useful parts of local tree flora are promoted. Swampland jelutong, *Dyera polyphylla*, has been domesticated in peat areas Jambi province, Indonesia. We discuss jelutone domestication in two coastal districts.

Planted jelutong with good farm management showed diameter growth rates of 1.3 to 1.9 cm year⁻¹. Onfarm trials showed that dolomite as soil ameliorant did not affect diameter growth, but had some effect on height. Jelutong planted between young oil palm had the best performance, while jelutong that was underplanted in mature rubber gardens grew slowly. Slow market revival currently constrains further tree domestication of ielutone.

"Genetic diversity of *Dyera*polyphylla (Miq.) Steenis populations
used in tropical peatland restoration
in Indonesia" – under review process

Paludiculture in Ogan Komering Ilir, South Sumatra

Conservation plot of native tree species


Agro-silvofishery in S. Sumatra: jelutung, fish pond

Tipology: Ombrogen, sulfidic acid Peat depth: moderate – deep (250->800 cm) Maturity: sapric - fibric

Purun (Elaeocharis dulcis)

Paludiculture in Kuburaya, W. Kalimantan

Typology:
Ombrogen
Deep: shallow
to moderate
(<3 m)
Maturity:
Hemic sapric

(Homestaypontianak.wordpress.com)

Paludiculture in Pulang Pisau, Central Kalimantan

 Jelutung and horticulture in Jabiren, Central Kalimantan

Deep peat

Jelutung planted

- Buffalo water in deep peat.
- Elaeocharis dulcis ('Purun') is widely used

Surjan system of rubber treepaddy in C. Kalimantan

Moderate depth

Potential for development

- 1) In the national agenda, 12.7 million ha forest area is allocated for social forestry program.
- 2) Restoration target: 2.4 million ha up to 2019.
- 3) Community's interest in practising paludiculture is improved, as long as there is an economic benefit.
- 4) Community nurseries are available in some villages

Challenges:

- A. Gap of Research & Development:
- Productivity study and optimalization model of peatland use
- Permanent sampe plots and regular monitoring on environment aspects of peatland uses, such as regular monitoring on water level, subsidence, emission, etc.
- Trade off between economic value and ecologycal benefit

Challenges (cont.):

- B. Socialization and policy strengthening:
- Communication strategy on the development of paludiculture products
- Reward mechanism: compensation and/or subsidies, for rewetting project.
- Regulations support on marketing paludiculture products.

Challenges (cont.):

C. Market and marketing:

- Non wood products, such as jelutung latex, 'gemor'
 (Alseodaphne spp.), rattan, and 'purun', are currently less
 valued compare with edible products.
- Value chain analysis for paludiculture products.
- Market development from raw materials to processed product.
- Public-private partnership mechanism, for developing paludiculture products, including scheme of 'green economy', 'green label', 'green price'.

Way forward

- Scaling up research findings into pilot project
- Developing mechanism public-private partnership
- Improving awareness on the renewable resources from peatlands, and improving capacity building for the communities.
- Government and Policy support

Thank you Danke