

From natural peat moss to a commercial growing media constituent

Dr. Jan Köbbing, Dorothea Rammes, Gerald Schmilewski | 28th September 2017

Conference "Renewable Resources from Wet and Rewetted Peatlands" Greifswald, Germany

Agenda

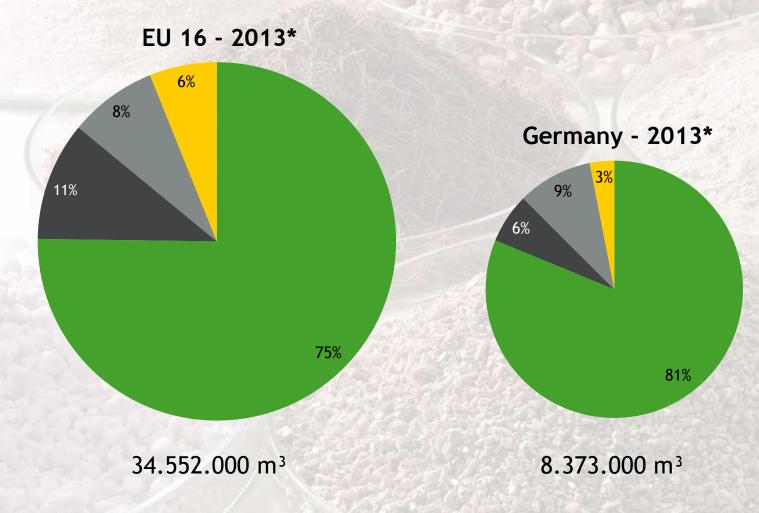
01 Introduction

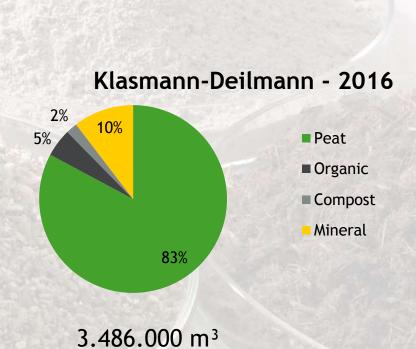
02

Sphagnum farming project at Klasmann-Deilmann

03

From peat moss to growing media


04 Conclusion



01 Introduction

Amount of different growing media constituents used

SUBSTRATES

Growing media constituents at Klasmann-Deilmann

Alternative Raw Materials

Share of total production 2016:

6.8%

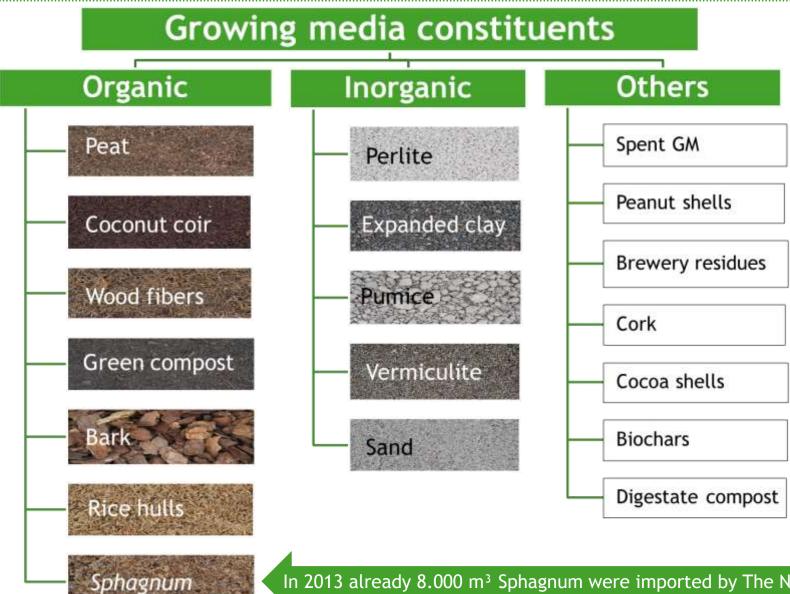
Our target:
Obtaining 15% of our raw materials
from alternative sources

Food Industry

Share of total sales 2016:

43.5%

A growing share of our substrates contributes to food production



Introduction

Professional gardening today

In 2013 already 8.000 m³ Sphagnum were imported by The Netherlands, France and Germany

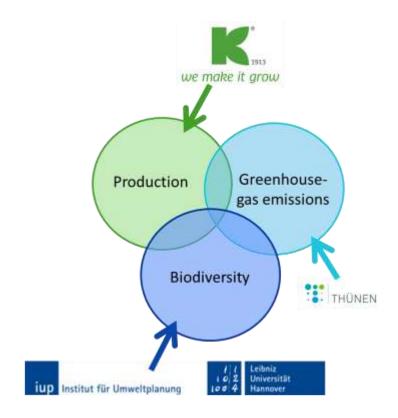
Schmilewski, 2017

EU Sphagnum imports

- Sphagnum is imported from:
 - Finland: Harvest from unprofitable, drained peatlands
 (Silvan et al. 2017)
 - Chile: Manual harvest from Sphagnum-dominated wetlands (Díaz & Silva 2012)
 - Australia / New Zealand: Harvest from natural sites
 - USA: Harvest from marsh sites
- Sphagnum is imported to:
 - The Netherlands, France, Germany and so on
 - In 2013 around 8.000 m³ (Schmilewski 2017).
- Sphagnum so far is mainly used for:
 - Orchids, gardening or terrarium

Moss harvesting Finland (Silvan et al. 2017)

Moss Harvesting USA (Mossman381, 2014)


02

Sphagnum farming project at Klasmann-Deilmann

Sphagnum farming project at Klasmann-Deilmann

- Cultivation of hummock peatmosses (Sphagnum species), harvesting and processing to obtain a growing media constituent
- Establishment of two 5 ha large test sides following peat depletion.
 Residual peat layer of strongly decomposed (black) peat
- Investigation on animals (invertebrates), plants and greenhouse gas emissions by the University of Hannover (Dr. Martha Graf) and the Thünen-Institute Braunschweig (Dr. Bärbel Tiemeyer)
- Co-Funded by the Ministry of Food, Agriculture and Consumer
 Protection of Lower-Saxony and the German Foundation Environment
 (DBU)

Project sites

Sphagnum farming site

,Sphagnum-Bank' - growing new donor material

Establishment of sites

Harvest of donor material

Inocolation of fiels with mosses and protection with straw

Established Sphagnum lawn after 1 year

03

From peat moss to growing media

Donor material

Procurement of donor material is difficult!

- Harvesting inoculation material from natural/near-natural bog sites.
 - → High bureaucracy, most sites are protected.
- Other methods of propagation needed for scaling up Sphganum farming.
 - → We set up a "Sphagnum-Bank" for growing new donor material

Farming sites

Where to grow in Germany?

- On grassland bogs
 - High contamination with weeds -> excavation
 - High nutrient occurrence in soil and water
 - But lower land price compared to farmed bogs
- On cut-over bogs
 - Are either designated as conversation sites
 - Or have a high price
 - → subsidies are needed

Cultivation & Harvesting

- Low productivity of mosses → test of different species & species selection
- Colonization with weeds \rightarrow regularly mowing until lawn established
- Challenging hydro management (irrigation, drainage, availability, quality)

Contaminations (impurities)

- 90-98% of the donor material contains of Sphagnum
- RHP quantity threshold
- Untreated Sphagnum material showed partly
- <15 plants per m²
- >600 plants per m²

→ Hygenization is indispensable when Sphagnum is processed to horticultural substrate!

Hygenization methods

By hand

Weed out all visible parts of vascular plants and other non Sphagnum pieces.

 \rightarrow not practicable

Gamma radiation

6 KGray

Waste heat biogas plant

60°C dry heat for 5 days, thickness 20cm

Vapour

90°C wet hot steam in existing facilities for 20min

Processing

- Chopping
- Drying
 - Air drying
 - Using waste heat (biogas plant, etc.)
 - Other methods?

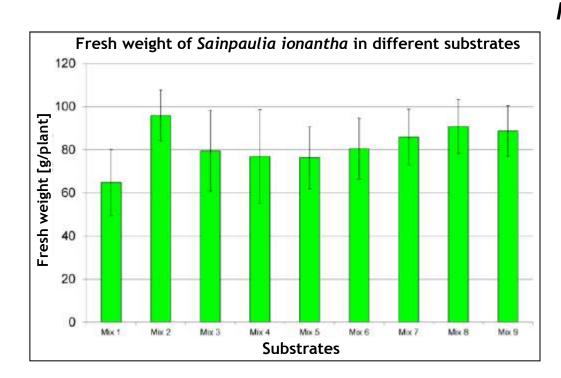
Moisture reduction from 90% to 20%

- Determination of volume weight
 - The dry material is more difficult to handle
 - Different methods are used to determine volume
 - Sphagnum can vary widely in moisture content
- Long fibres have a higher volume/weight ratio than chopped Sphagnum
- Volume/weight depends on Sphagnum species

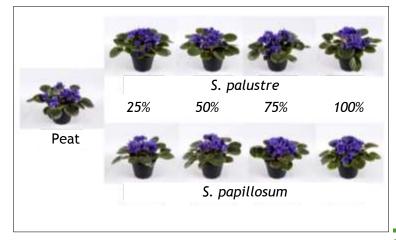
Creating a growing media constituent

- Hygenised and dried Sphagnum is mixed with (white) peat to create growing substrate.
- Depending on Sphagnum species and culture grown in the substrate,
 Sphagnum can replace peat up to 100%

- Still under research:
 - Which Sphagnum species can be used for which culture and in which amounts?



Cultivation


First trials show outstanding results as growing media!

Impatiens Neu-Guinea

Sainpaulia ionantha

04 Conclusion

Conclusion

- Fresh Sphagnum moss has shown its suitability as a growing media several times
- The peat industry would be highly interest if its available in required quantity, quality and price
- But:
 - Natural sites are limited
 - And artificial sites still have to overcome a number of obstacles.

Thank you for your attention!

Dr. rer. nat.

Jan Felix Köbbing

Head of Sustainability Management Land Use and Sustainability Management

Klasmann-Deilmann GmbH

Georg-Klasmann-Straße 2-10 | 49744 Geeste | Germany

www.klasmann-deilmann.com

References

Diaz, M. F., and W. Silva. 2012. Improving Harvesting Techniques to Ensure Sphagnum Regeneration in Chilean Peatlands. Chilean journal of agricultural research 72:296-300.

Schmilewski, G. 2017. Growing media constituents used in the EU in 2013. Acta Horticulturae 1168:85-92.

Silvan, N., K. Jokinen, J. Näkkilä, and R. Tahvonen. 2017. Swift recovery of Sphagnum carpet and carbon sequestration after shallow Sphagnum biomass harvesting. Mires and Peat 20:Article 01.

Mossman381. 2014. Moss Harvesting at The Marsh Pulling Wet Sphagnum Moss. https://www.youtube.com/watch?v=gLxIgaxQ7WM