

Let it grow!

Sphagnum biomass production on rewetted cut-over bog and bog grassland in Germany

1. Sustainable peat substitute for growing media

1. Sustainable peat substitute for growing media Sphagnum biomass with similar properties like ,white peat' Foto: A. Prager

2. Sustainable land use of peatlands

Current bog utilisation types in NW Germany (1)

Mosaic of different Sphagnum farming types on degraded bogs

pilot site cut-over bog

in NW Germany: Ramsloh

- oceanic climate
- mild winters
- Ø 9.6°C, 844 mm

study site cut-over bog: before installation

study site cut-over bog: spreading of mosses and straw

study site cut-over bog: after installation

study site cut-over bog: schematic view

- Size: ca. 60x20 m
- Irrigation: pipes every 5 m and surrounding ditch
- On black peat (H7), ca. 1.8 m thick

Gaudig et al. 2017, Mires & Peat

Sphagnum papillosum cover

- Continuous increase of vital (green) Sphagnum papillosum cover
- Established after 45 months (3.75 years)

S. papillosum lawn thickness and water table

- Continuous growth of Sphagnum papillosum lawn
- Up to 19 cm (mean) after 10 years
- Stagnation period = dry conditions

S. papillosum biomass and lawn thickness

- Growth in biomass and lawn thickness is related
- Low productivity during establishment phase + stagnation at dry cond.
- Biomass after 9 years: 19.5 t ha⁻¹ = 2.2 t ha⁻¹ yr⁻¹
- Max. biomass productivity 6.9 t ha⁻¹ yr⁻¹

Gaudig et al. 2017, Mires & Peat

Lawn thickness 6.5 years after installation

Lawn thickness 6.5 years after installation

- the higher the peat surface, the lower *Sphagnum* lawn thickness (P < 0.001, r = -0.4)
 - → height of peat surface as a proxy for water supply

...Let it grow! \rightarrow How?

- → most important factor for high *Sphagnum* yields:
 - constant high water table

Vascular plant cover

- mean total cover declined in the long term by regularly mowing
- Juncus effusus disappeared, increase of Erica tetralix
- no retarding effect on Sphagnum growth

...Let it grow! \rightarrow How?

- → important factors for high *Sphagnum* yields:
 - constant high water table
 - low vascular plant and litter cover
 - straw cover thickness < 3 cm

Mosaic of different Sphagnum farming types 🥡 on degraded bogs

© Uni Greifswald

study site bog grassland: site preparation

study site bog grassland: spreading of mosses and straw

Comparison of Sphagnum farming types

		cut-over bog	bog grassland
tested <i>Sphag</i> i	num species	S. papillosum	S. papillosum S. palustre S. fallax
established lawn (years after installation)		3.75	1.5
dry mass proc	ductivity		
(t ha ⁻¹ yr ⁻¹)	mean	2.2	4.7
	max.	6.9	8.6
		Gaudig et al. 2017	preliminary results

Comparison of Sphagnum farming types

	cut-over bog	bog grassland	
water tables (cm below <i>Sphagnum</i> surface) mean	14.3	7.6	
<pre>pump system for irrigation*</pre>	windmill	electronic	
peat decomposition degree	H7-8 ,black peat'	H2-5 ,white peat'	
'Wichmann <i>et al.</i> 2017	Gaudig <i>et al.</i> 2017	preliminary results	

greifswaldmoor.de 32

Comparison of Sphagnum farming types

	cut-over bog	bog grassland
area potential in Germany	~500 ha	~90.000 ha
climate protection potential	+	+++

→ Bog grassland with highest potential in Germany

Wichmann et al. 2017, Mires & Peat

greifswaldmoor.de

Sphagnum farming on 14 ha in 'Hankhauser Moor'

Sphagnum farming at RRR2017

2b Sustainable harvesting of *Sphagnum magellanicum* moss in Chile: a case analysis | Christel Oberpaur 2b From natural peat moss to a commercial growing media constituent | Jan Köbbing 3b Paludiculture and freenhouse gases: case studies from three sites in Germany | Anke Günther 4a Economics of paludiculture: Sphagnum farming, reed harvesting and cattail cultivation | Sabine Wichmann 5b Species protection by paludiculture: Sphagnum cultures as surrogate habitats | Matthias Krebs 5b Performance of *Sphagnum* species in experimental extracted peatland restoration | Edgar Karofeld 5b Protection for optimal *Sphagnum* growth | Martha Graf Sphagnum farming initiatives in Canada: an overview | Sandrine Hugron 6b 6b The water balance of a Sphagnum farming site in Germany | Kristina Brust 6b Sphagnum farming in a eutrophic world: the importance of optimal nutrient stoichiometry | Ralph Temmink

+ poster

