The water balance of a Sphagnum farming site in Northwest Germany

Kristina Brust¹, Andreas Wahren¹, Matthias Krebs², Greta Gaudig², Hans Joosten²

- ¹ Dr. Dittrich & Partner Hydro-Consult GmbH, Dresden
- ² Institute of Botany and Landscape Ecology, Ernst Moritz Arndt University Greifswald

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages Dr. Dittrich & Partner Glacisstraße 9a D -01099 Dresden

Hydro-Consult GmbH Tel.: +49 351 4014793

Fax: +49 351 4014796

www.hydro-consult.de - info@hydro-consult.de

Sphagnum farming

- field studies have demonstrated the feasibility of Sphagnum farming
- under natural conditions atmospheric water supply would provide enough water
- in drained landscape precipitation alone cannot ensure permanent wet conditions, particularly not in summer when evapotranspiration exceeds precipitation
- → Sphagnum farming sites require a water management system enabling irrigation, avoiding flooding

Investigation of water balance

- 1. In which periods do excesses and deficits occur?
- 2. What are the main sources of water loss?
- 3. How much water is needed to maintain the water table close below *Sphagnum* surface throughout the year?

Sphagnum farming site Hankhauser Moor

Sphagnum farming site Hankhauser Moor

Brust et al. submitted

Stratigraphy: former bog grassland ,Hankhauser Moor'

• uppermost 30-50 cm were degraded

Stratigraphy: former bog grassland ,Hankhauser Moor'

- uppermost 30-50 cm were degraded → layer removed
- high saturated hydraulic conductivity 120cm/day in upper peat layer
- with increasing depth hydraulic conductivity decreases
- → very limited vertical seepage
- → horizontal fluxes to adjacent drained areas

Brust et al. submitted

water input water losses

P ... precipitation, Q_{in} ... inflow

plus/minus

ETR ... evapotranspiration, Q_{seepage} ... seepage, Q_{out} ... outflow

ΔS ... change of water storage

Components for calculating the water balance

• a combined concept of modelling and measurement:

Measured:

- P at weather station and for long-term simulations station Bremen 1993-2013

Components for calculating the water balance

• a combined concept of modell and measurement:

Measured:

- P at weather station and for long-term simulations station Bremen 1993-2013
- Q_{in} and Q_{out} via surface water in outlet \rightarrow calculation

© Uni Greifswald

Study design

Components for calculating the water balance

a combined concept of modell and measurement:

Measured:

- P at weather station and for long-term simulations station Bremen 1993-2013
- Q_{in} and Q_{out} via surface water in outlet \rightarrow calculation
- phreatic, surface and ground water level

Brust et al. submitted

a combined concept of modell and measurement:

Measured:

- P at weather station and for long-term simulations station Bremen 1993-2013
- Q_{in} and Q_{out} via surface water in outlet \rightarrow calculation
- phreatic, surface and ground water level

Modelled:

- ETR modelled via Romanov-Approach, ET from water surface (ditches) via Dalton-approach
- $Q_{seepage}$ via phreatic, surface and groundwater level \rightarrow modelled with the package Visual MODFLOW
- Δ S modelled with change of water level

Water levels (August 2011 – October 2013)

- phreatic water levels near peat surface and similar to water levels in the irrigation ditches
- water levels in drainage ditches and Schanze considerably lower
- groundwater level between level of phreatic water and that of drainage ditches

Dr. Dittrich & Partner

River Schanze

© T. Dahms, S. Busse

• Driest period in spring

Brust et al. submitted

In which periods do excesses and deficits occur?

- 2013 dry year: 709 mm compared to Ø 849 mm yr⁻¹(1989-2013)
- annual cycle of ETR → spring and summer: ETR > P
- winter: ETR < P
- summer: ETR > P, water deficit: 280 mm in summer 2013

In which periods do excesses and deficits occur?

- annual cycle of ETR → largest impact on water balance
- summer: ETR largest output flux → deficits: compensated with irrigation
- winter: outflow via ditches (water excess)

- 47% of incoming water is lost via ETR
- losses by seepage accounted for 24% of the total water losses

How much water is needed to maintain water table high?

 water demand trial site (8640 m²): 3100 m³ for the hydrological year 2013

How much water is needed to maintain water table high?

• Long term: mean water demand: 1600 m³/ha and year

- ETR high due to the all-year high water table → advection enhances ETR (oasis-effect)
- Q_{seepage} 24% → horizontal fluxes to adjacent drained peatland
- → extra losses could be reduced, if the Sphagnum site would be surrounded by wetter areas and/or a larger size of the farming site
- measured Q_{in} overestimated (malfunction of irrigation system in 2013)
- modelled water demand: ~1600 m³ per year and hectare

- Establishment of a Sphagnum farming site on drained bog proved to be successful
- With controlled management the water levels were kept almost constantly close to surface level to ensure optimal growth of *Sphagnum* mosses
- Water demand is high compared to ideal site conditions
- Losses will decrease (lateral seepage, advection → evapotranspiration) with increasing size of the Sphagnum farming site
- Approach to assess necessary irrigation volumes is transferable to other sites when considering site-specific characteristics

